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Abstract. Electroacoustic wavesare investigated in the 180"periodicdomain structure. Some 
elementary methods are provided. The expressions for the Hamiltonian and the explicit 
equations for the dispersion of bulk modes as well as interface modes are obtained. The 
results are analysed and a possible elementary mode is proposed. 

1. Introduction 

Since Bleustein [ 11 and Gulyaev [2] discussed a new type of surface wave in piezoelectric 
crystals, many researchers have done much work in the field. Maerfeld and Tournois [3] 
published a paper about the study of the electroacoustic waves of the ferroelectric 
domain wall. One of the present authors has extended the research to the case of domain- 
layered structure [4]. The results have been demonstrated experimentally [5]. Recently 
we have further extended our work to the structure of a coherent array of domains [6] 
and it is found that a velocity band exists. However, in the previous paper, only the 
interface modes were investigated. In this paper, we develop a systematic investigation 
of interface and bulk modes by using a new method which may be called the state 
combination method. A series of dispersion bands are found. An expression for the 
Hamiltonian of the system is given. It turns out that the modes are those of the propa- 
gation of the coupling between the displacement and the electric field. They comprise a 
new kind of elementary mode which exists in ferroelectric domains. 

The interest in surface and interface properties of condensed media and of thin layer 
properties has been greatly increased at the present time owing to the possibility of 
fabricating layered structures by modern crystal growth techniques. The surface phonons 
and elementary excitations in the superlattice are of much current interest. Camley et a1 
[7] have systematically investigated the propagation of transverse elastic waves in the 
superlattice in detail. Dobrzynski and co-workers [8,9] have investigated surface 
phonons and magnons in the superlattice of two or more materials [ 101 by using the 
interface response theory. Barch et a1 [ l l ]  propose that 'dyadons' exist in the coherent 
array of a twin boundary; the frequency is about 10IOs-' which involves a quasi- 
macromotion. A superlattice made of antiphase domains has been reported [12] and its 
application in acoustic transducers has been investigated [13]. It is well known that 
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Figure 1. The orientation of domains and the co- 
ordination system. There are 2N layers. The 
polarization of type 1 is parallel to the z direction, 
while that of type 2 is opposite to the z direction. 

0 

acoustic phonons play an important role in the understanding of many physical processes, 
especially at low temperatures. The antiphase domain superlattice has been observed 
in a high-temperature superconductor [14]. We hope the present investigations may give 
some insight into the vibration modes in these structures. Section 2 gives the conventional 
method for describing the vibrations in a superlattice from which eigenvalues and 
eigenvectors can be found. Yet the computations are complicated. In sections 3 and 4, 
two other methods are introduced: the Hamiltonian function and state combinations. 
In section 3, we have given only general results without further computation. The 
emphasis in this section is on the idea of the splitting of energy of the system, while in 
section 4 we have derived the appropriate dispersion relations in a closed analytical 
form; thus the whole vibrations picture has been presented. The conclusions reached on 
the basis of the work described in this paper are presented in section 5. 

2. Theory 

The propagation of elastic waves in a piezoelectric crystal is governed by the following 
equations [15]: 

p(a*u; /d?)  - C/;,/[a*uk/(ax/ ax,)] - e k i j [ d 2 ( p / ( d x k  ax,)] = 0 

e j k l [ a 2 u k / ( a x l  a x j ) ]  - ~,,[a~(p/(dx, ax j ) ]  = 0 

(1) 

(2) ( i ,  j ,  k ,  1 = 1,2 ,3)  
where p ,  Cijk,, ekjland &jk are the mass density, the elasticstiffness tensor, the piezoelectric 
tensor and the dielectric permittivity tensor, respectively. U is the displacement vector 
and Q.J the electric potential. 

We assume that the layers in the superlattice belong to the 6mm class with their C 
axis along the z axis of a reference basis set, while the normal to the layers is x and the 
wavevector k is parallel to the layers, oriented along y. As shown in figure 1, the 
polarization of type 1 is parallel to the z direction, while polarization of type 2 is opposite 
to the z direction. 

For each layer, we can assume the following solutions: 

u 3  = u,(a/,x) exp[ j(k,y - or)] 

(p = (p,(a/,x) exp[j(k,y - ot)] 

( n  = 1 , 2 , .  . . , 2 N )  

( n  = 1 , 2 , .  . . , 2 N )  
(3) 

(4) 
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where the index n indicates the cell number in the superlattice and (Y refers to the two 
constituents with a = 1,2.  With the symmetry of our problem, the Bleustein-Gulyaev 
wave decouples from sagittal elastic waves. For a shear horizontal wave which we are 
interested in in this paper, the coupled variables (u3 ,  cp) can be written as 

U,(&, x) = F,, exp(kbx) + F,, exp(-kbx) ( 5 )  

cp,(a,x) = i F1,  exp(kbx) i F2,, exp(-kbx) + F3,, exp(kx) i F4,, exp(-kx) (6) 

where the upper sign is for (Y = 1 and the lower for (Y = 2; 

b = ( 1  - u2/u+)”2 u 2  T - - c44/P D c g  = c44 + e : 5 / ~ l l .  

Define a four-component column vector 

where z and D are the sagittal shear stress and normal component of the electrical 
displacement, respectively. We may call U the state vector for it must be continuous at 
each boundary. 

The above z,, and D are expressed as 

z,(a, x) = F1,  exp(kbx) - FZn exp( -kbx) + rF3, exp(kx) - rF4, exp( -kx) (8) 

D,((Y, x) = 3 F3,, exp(kx) + F4, exp( -kx) (9) 

where the upper sign is for (Y = 1 and the lower for a = 2; r = b M T / b  and 
b M T  = e : 5 / ~ 1 1 ~ ; .  It is convenient to assume that the variable x appearing in equations 
( 5 ) ,  (6), (8) and (9) is a local variable ranging from 0 to h in each layer. Therefore for 
each layer we have 

where 

0 ?exp(kx) *exp(-kx) r o  
exp(kbx) -exp(-kbx) r exp(kx) - r  exp(-kx) 

?exp(kbx) +exp(-kbx) *exp(kx) iexp(-kx) 
G(p ,x)  = 

1 exp(kbx) exp(-kbx) 0 0 - 

and the upper sign is for a = 1 and the lower for a = 2. 
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From the boundary conditions at the interface, we have (see appendix 1) 

FZN = /G- '(2,O)G(l,  h)G- ' ( l ,  O)G(2, h)lNFZN. 

IT - exp( j2nlIN)EI = 0 

(11) 

After some manipulations (see appendix l ) ,  the dispersion equations were obtained: 

(12) 

where T = G-'(2,O)G(1, h)G-'( l ,  O)G(2, h ) ,  T is the transfer matrix. E is a 4 x 4 unit 
matrix. 

3. The periodic Hamiltonian 

In this section we have derived the Hamiltonian function of the system, which is another 
way of describing the vibrations of the ferroelectric domains. From [16], we have a 
periodic Hamiltonian of the system with the Hamiltonian function given by 

H = i[qn* (a ,  x)P(  a ,  x)qn (a ,  x )  + (a ,  x)Q( a, x)Pn (a7 x)] (13) 

and 

where 

1 -El lk2 k e I j k 2  
Q( a, x )  = 

[?e l jk2  C l l k 2  - pw2 

P( a,  x )  = 

where the upper sign is for a = 1 and the lower for (Y = 2. 
For the nth periodic layer, we have 

N N 

D , ( a , x )  = D,, / (a ,x )  = e, ,kexp [TC%exp(kx) 5 cZexp(-kx)] 
I =  I I =  1 

N N 

r n ( a , x )  = E r n , / ( a , x )  = Cy4kb exp 
/ =  1 I =  1 

x [C; exp(kbx) - C,4 exp(-kbx) + yCg exp(kx) - yC$ exp(-kx)] 
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N iV 

u,(a,x)  = u, , / (a ,x)  = exp [CS exp(kbx) + Cgexp(-kbx)] (14) 
/=  1 I =  1 

where 

stands for the vibration amplitude coefficient vector corresponding to the Ith mode 
at the first periodic layer. Substituting equation (14) into equation (13), after some 
complicated algebraic computations, we obtain 

with a = 1 , 2  for different types of domain. 
Cf' are determined by 

[T" - exp( j2xI/N)]C;Y = 0 (16) 

where T" is the transfer matrix for type a domains: 

T" = G - ' ( a ,  O)G(a', h)G- ' (a ' ,  O)G(a, h )  ( a  # a'; a ,  a' = 1,2).  

Cy are the components of the normalized eigenvectors of the transfer matrix and 
exp( j2nl/N) are the corresponding eigenvalues. In equation (15), Cg and C5 are the 
elastic displacement amplitudes of the Ith vibration modes, and C,4 and C$ are the 
electric field amplitudes of the Ith vibration modes. From equation (15), we know that 
there exists a separate energy value corresponding to the Ith vibration mode for each k ,  
i.e. I = 1 ,2 ,3 ,  . . . , N ;  H = H I ,  H 2 ,  H 3 ,  . . . , H N .  It should be noted that, in constructing 
the vibration spectrum for a set of N domain layers, we have obtained N independent 
oscillators corresponding to Nmodes of the system. Each oscillator has an independent 
Hamiltonian energy. The Hamiltonian of the system is the sum of the energy of N 
independent oscillators. 

4. The dispersion relations 

The dispersion relations of the interface modes may be obtained from equation (12). 
Here we present a simple computation which leads to the solutions of both interface and 
bulk modes. The emphasis in this work is on obtaining results analytically as much 
as possible although computer calculations are ultimately required to translate these 
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analytical results into more easily understood plots. Equation (10) can be written in 
another form: 

U n ( a , x )  = M n ( @ . , X ) E n  

where 
r-2 cosh(kx) 0 - k  sinh(kx) 0 

+keI5 cosh(kx) k ~ C , , c o s ( k , x )  t k e 1 5  sinh(kx) -k,C,D, sin(k,x) 
M,(~ ,X )  = 

sin h( k x )  t [ e , , s i n ( k , x ) ] / ~ , ~  cosh(kx) e15 cos(k,x) 

L O  sin k , x  0 cos(k,x) 

k; = (C5)-’(-C,D,k2 + pw2) 

for bulk modes, while for interface modes we can replace the trigonometric functions 
by hyperbolic functions, where x is the local variable ranging from -h to h of the domain 
thickness 2h. 

Equation (17) may be written in the following form: 

Thus the above 4 X 4 matrix is composed of four matrices with SI(&, x) and R 2 ( a ,  x )  
symmetrical in x while S 2 ( a ,  x )  and R l ( a ,  x )  are antisymmetrical. In this way we can 
simplify the computations which we call the state combination method. 

The expressions for the 2 x 2 matrices of Sl (a ,  x ) ,  S 2 ( a , x ) ,  Rl(a, x ) ,  R2(cu,x) are 
obvious from equation (17). The boundary conditions must be satisfied in every domain 
boundary with 

Un(aJ)Ix=h, = Un+l(”,X)lx=-h* (19) 

U n (a ,  x )  I x = - h , = U , I  - 1 (a’ 9 x )  I x = i 1 2 .  (20) 

while at the other boundary of the same domain 

Taking into account equations (18)-(20) and the Bloch factor, for h l  = h2 = h (the 
domain thickness is 2h) we have (see appendix 2) 

where 

g . .  ,, = s- , ( 1, h ) S j ( 2 ,  h )  + R;’(l> h)Rj(2, h)  (i, j = 1,2)  
with 

A = [I + exp( j2nl/N)]/[1 - exp( j2nl/N)]. 

If, for example, lg121 # 0, we have 

k 2 1  - k2g22g;2k11 I = 0 (22)  
while for k = 0 we have lg21(h)/ = 0 or (g12(h)l = 0 and for A-, x we have lg22(h)l = 0 
or /gll(h)l = 0. In general we obtain 

k ,  cot(2kxh) = bMTk tanh(2kh) (23) 
and 
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Figure 2. Phase velocity versus kh for 20-domain- 
layer low-lying states of the poled BaTiO, crystal 
(els = 1 1 . 4 C m - 2 ; ~ , l  = 9.87 X lO-"Fm-l; bMT = 
0.25). 

Figure3. Four kinds of dispersion curve in a multi- 
layer structure. 

k ,  cot(k,h) = bM,kc tanh(kh) 

b coth(2kbh) = bMT tanh(2kh) 

b tanh(kbh) = bMT tanh(kh) 

(24) 

(25) 

(26) 

where bMT = e:5/C,D4&,, is the limit of the bulk band: 

and 

where b = k ( 1  - u ' / u ~ ) " '  are the upper and lower limits of the interface band. 

5. Results and discussion 

5.1. Characteristics of the dispersion 

From equations (22)-(26), we see that some general characteristics exist: 

(i) When kh is large (kh S l), i.e. h 9 A, the interaction between different domain 
walls is small. For every domain wall, we obtain the results for the MT wave. When kh is 
reduced from a large value, the interaction between domain walls is increased. The 
dispersion curve splits into N separate curves, corresponding to N vibration modes. 
When N is large, dispersion bands exist. In each band there are N dispersion curves 
corresponding to N different modes. The dispersion relations of low-lying states for 
N = 10 of the poled BaTiO, crystal are shown in figure 2. The following data are used: 
e15 = 11.4 C m-*, uT = 3162.21 m s-l and bMT = 0.23. 

(ii) There are four kinds of dispersion curve, as shown in figure 3. Curve A is similar 
to that of the flexure wave. Its dispersion curve is given by equation (26). Curve B is the 
same as our previous published dispersion [4]. The only difference is that here there is 
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a cut-off frequency. Curve C is a new kind of dispersion, which is similar to that of a 
Love wave. In fact, we shall call it the stiffened Love wave [15]. We should note that 
hert  the materials are the same except with opposite polarizations. The field profile 
analysis [6] shows that the fields of opposite domains in one period change oppositely to 
each other. They are 180" out of phase. Curve D is typical of the plate modes in the 
multi-layered structure [17]. The velocity is larger than uT. 

We have calculated the o versus k relations from equation (22). The results are 
shown in figure 4. The first band is the interface mode band (see equations (25) and 
(26)). Its frequency lies on the right of line uTk ( U ;  = CF4/p) on the dispersion plot of 
w versus k .  Along the direction normal to the interface, the exponential decrease with 
increasing depth of the amplitude is sinusoidally modulated. The vibration amplitude 
has its maximum value at each interface. The second and higher bands are bulk modes 
(see equations (23) and (24)). In each layer, the vibration amplitude is sinusoidally 
modulated. There exists a frequency gap between each band. The dispersion spectrum 
characteristics are similar to those obtained by Dobrzynski et a1 [8, 91. Typical fre- 
quencies of the first and second bands are 1-10 GHz for domains of typical thickness 
1 pm. Each band contains N independent vibration modes and the interface modes are 
the low-lying frequency states. 

5.2. Energy splitting 

From equation (15), we know that these oscillators are special phonons. They are 
couplings of phonons with electric polarizations in periodic 180" ferroelectric domains. 
There exists a splitting of the energy corresponding to the different dispersion bands 
and dispersion curves. 

5.3. Field profiles 

Typical field profiles are shown in figure 5. The phases of the fields on both sides of each 
layer change. When kh is large, only the fields near the interface are large and in the 
centre the electric potentials have decayed to zero. When kh is small, the amplitudes of 
fields (especially the electric potentials) are large in the whole medium, i.e. at the centre 
of the layer, the fields are comparable with those of both sides of the layer. As long- 
wavelength approximations are being considered, when h < 1 pm, we may regard the 
whole system as a 180" laminar domains or domain superlattice system. From the 
potential profiles (figure 5) we can easily get the curves of the space distribution of 
electric field E,. In each layer, there is a region in which E, is in the opposite direction 
and there is an interface plane of the normal components of the amplitude of the quasi- 
static electric field of two opposite fields [4]. For a multi-layer domain layer structure, 
we have div D = 0 but $ E  ds  # 0, i.e. the bulk density of the free charge is zero and 
there exists a vibration source in the domains which leads to $ E ds  # 0 [4]. 

The above theory for h S 1 pm is the continuum theory of the laminar domains or 
domain superlattice system. We propose to call these independent oscillators 'domai- 
nons' as an abbreviation of special domain vibration phonons. 

We propose the following possible vibration mode. As shown in figure 6, U is 
the elastic displacement of the vibration mode, and E,. and E, are the electric fields 
accompanying the vibration mode. U coupling with E, and E,. travels along y direction. 
The dipole in the upper domain rotates counterclockwise under the force of the electric 
field Ey while the dipole in the lower domain rotates clockwise, thus forming a new kind 
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Figure 4. Dispersion hands of domain wall 
oscillations ( E ~ ,  = 9.87 x 10- 'Fm- ' .  , e , ,  = 
11.4 C m-'; bMr = 0.23: 2h = 1 pm: region 1,  
interface modes; regions 2 and 3. hulk modes). 
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(0 

Figure 5. The displacement and potential profiles 
along the thickness direction over one period of 
the layered structure corresponding to dispersion 
curve B in figure 3 for ( I  = 2) ( a )  hk = 2.0. ( b )  
hk = 5.0 and (c) hk = 10.0. The vertical full lines 
represent the domain interface. The broken 
curves represent electric potential profiles. 

Figure 6. The 
oscillations. 

possible picture of domain wall 

of mode, which is one of the characteristics of the 'domainons', i.e. the transverse 
vibration plus microrotation of the dipole. Its typical frequency is 109-10"' Hz. We note 
that in SrTiO, the soft-mode eigenvector shows [ 181 that the distortion consists of an 
out-of-phase 'rotation' of adjacent oxygen octahedra in the (100) planes. The rotation 
angle for the oxygen octahedra varies from 2' at 0 K down to zero at To = 106 K. 
The distortion produces domains below To,  thus forming antiferroelectrics. As an 
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antiferroelectric is composed of alternating up and down dipoles, the superlattice exam- 
ined in this paper consists of alternating blocks of up and down dipoles. This resemblance 
is far more than a mere superficial feature of the system. We obtained vibration modes 
whose eigenvectors are similar to those of antiferroelectrics. The ‘domainons’ differ 
from general acoustic phonons of the superlattice in that they relate the acoustic dis- 
placements to electric fields and are collective vibration modes of the multi-layer 
domains, which reflect the interactions of the whole 180” microdomain superlattice 
system. 

Appendix 1 

In the superlattice, the state vectors U in two successive layers should match each other 
at the interface. 

At the interface of the first and second layers, U l ( h )  = U 2 ( 0 ) ,  i.e. 

G(1, h)F1 = G(2,O)Fz. (A l . l )  

At the interface of the (2i)th layer and (2i + 1)th layer, 

G2i(29 h)F2i = G2i+1(17 O)F2i+i. 

At the interface of the (2i + 1)th and (2i + 2)th layer, 

G2i+1(1, h)F2i+i = G2i+2(23 O)F2i+2. 

From equations (A1.2) and (A1.3) we obtain 

(A1.2) 

(A1.3) 

F2i+2 = G,:2(2, 0)G2i+l(13 h)G;il(l? 0)G2i(27 h)F2i* (A1.4) 

We note that the square matrices G2,+,(2, 0), G2i+l(l ,  h ) ,  etc, are all independent of 
the layer number; therefore 

FZN = [G-’(2,O)G(l, h)G-l( l ,  O)G(2, h ) l N - ’ F 2  

(2,O)G(1, h P 1  -TN-lG-l - 

whereT = G-’(2,O)G(l, h)G-l(l, O)G(2, h ) .  
Considering that N is large, we can use the Born-Karman condition 

U,””@) = 

G2,(2, ~ ) F z N  = Gi(1, 

i.e. 

Substituting equation (A1.6) into equation (A1.5) we have 

FZN = T2””F2””. 

FZN # 0; then 

IT”” - El = 0 

(A1.5) 

(Al.6) 

(A1.7) 

(A1.8) 

where E is the 4 x 4 unit matrix. 
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Assume that 
T = S-'JS (A1.9) 

where J is the diagonal matrix. Combining equation (A1.9) with equation (A1.8), we 
obtain 

i.e. 
(A1.lO) 

We conclude that the diagonal matrix contains the components exp( j2nI/N) 

IS-'JNS - El = 0 

IJ'" - El = 0. 

(I = 0,1 ,2 , .  . . , N -  1). 
IJ - exp( j2nIIN)EI = 0 

IT - exp( j2nl/N)El = 0. 
and thus 

Appendix 2 

For the nth layer, we have 
s1 (a, X)C/ + S2(a, X)CJ = q n ( a ,  x )  
R1 (a, X)C/ + R * ( a ,  X)CJ = P n ( a ,  x ) .  

Here C, and C, are the vibration coefficients of the nth layer. 
We may set a = 1 for the nth layer: 

Un(1, -h) = Un-1(2, h)  
Sl(1, -h)C/ + S2(1, -h)CJ = S,(2,  h)C; + S,(2, h)C; 
RI(1, -h)CI + R2(1, -h)Cj = Ri(2, h)C; + R2(2, h)C; 

From the symmetries of Sj (a ,  x )  and R j ( a ,  x ) ,  we have 
Sl(1, h)C, - S2(1, h)CJ = Sl(2, h)C; + S*(2, h)C; 
- R I ( l ,  h)C/  + R2(1 ,  h)Cj = Ri(2, h)C; + R2(2, h)C; 

while in the other boundary of the domain 

we have 
Un(1, h)  = Un+l(2, -h) 

Sl(1, h)C/ + S*(1, h)CJ = S'(2, h)C; - S,(2, h)C; 
Ri(1 ,  h)C, + R2(1, h)Cj = -R1(2, h)C; + R*(2, h)C;. 

For the periodic structure, the Bloch theorem may be used: 

Thus 
S1(l ,  h)CI + S2(1, h)CJ = exp( j2nZ/N)(S1(2, h)C; - S2(2, h)C;)  

Rl(l ,  h)C,  + R2(1, h)CJ = exp(j2nI/N)(-Rl(2, h)C; + R2(2, h)C;). 

Equation (A2.6) plus equation (A2.12) gives 
2S1(1, h)C/ = [I + exp( j2nl/N)]S, (2, h)C; 

+ [I - exp( j2nl/N)]S2 (2, h)C;. 
Equation (A2.13) minus equation (A2.7) gives 

I 

(Al . l l )  

(Al.  12) 

(A2.1) 
(A2.2) 

(A2.3) 
(A2.4) 
(A2.5) 

(A2.6) 
(A2.7) 

(A2.8) 

(A2.9) 
(A2.10) 

(A2.11) 

(A2.12) 

(A2.13) 

(A2.14) 



9588 Li Xingjiao et a1 

2R1(1,h)CI = [1+exp(j2d/N)]R1(2,h)C; 

+[1  -exp(j2d/N)]R2(2,h)C;. 

Combining equation (A2.14) with equatiot: (A2.15), we have 

[ l  - exp(j2nl/N)][S;'(1,h)Sl(2,h) + R;'(1,h)Rl(2,h)]C; 

+ [ 1 - exp( ~ ~ J G I / N ) ] S ; ' ( ~ ,  h)S2(2, h)  

+R;'(l,h)R2(2,h)]C; = 0. (A2.16) 

Equation (A2.12) minus equation (A2.6) and equation (A2.13) plus equation (A2.7) 
then combine to give 

[ l  - exp(j2d/N)][ST'(l, h)S1(2, h )  + RYl(1, h)R,(2, h)]C;  

+ [ 1 + exp( j2nl/N)][S 7'  (1, h)S2  (2, h)  

+R5'( l ,h)R2(2,  h)]C; = 0. 

Equation (A2.16) and equation (A2.17) leads to equation (21). 

(A2.15) 

(A2.17) 
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